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Abstract—Deep convolutional neural networks (CNNs) have
demonstrated impressive performance on many visual tasks.
Recently, they became useful models for the visual system in neu-
roscience. However, it is still not clear what is learned by CNNs
in terms of neuronal circuits. When a deep CNN with many lay-
ers is used for the visual system, it is not easy to compare the
structure components of CNNs with possible neuroscience under-
pinnings due to highly complex circuits from the retina to the
higher visual cortex. Here, we address this issue by focusing on
single retinal ganglion cells with biophysical models and record-
ing data from animals. By training CNNs with white noise images
to predict neuronal responses, we found that fine structures of
the retinal receptive field can be revealed. Specifically, convolu-
tional filters learned are resembling biological components of the
retinal circuit. This suggests that a CNN learning from one single
retinal cell reveals a minimal neural network carried out in this
cell. Furthermore, when CNNs learned from different cells are
transferred between cells, there is a diversity of transfer learn-
ing performance, which indicates that CNNs are cell specific.
Moreover, when CNNs are transferred between different types
of input images, here white noise versus natural images, transfer
learning shows a good performance, which implies that CNNs
indeed capture the full computational ability of a single reti-
nal cell for different inputs. Taken together, these results suggest
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that CNNs could be used to reveal structure components of neu-
ronal circuits, and provide a powerful model for neural system
identification.

Index Terms—Convolutional neural network (CNN), deep
learning, natural images, parameter pruning, receptive field,
retina, transfer learning, visual coding.

I. INTRODUCTION

DEEP convolutional neural networks (CNNs) have been
a powerful model for numerous tasks related to system

identification in recent years [1]. By training a CNN with
a large set of target images, it can achieve the human-level
performance for visual object recognition. However, it is still
a challenge for understanding the relationship between com-
putation and the underlying network structure of components
learned within CNNs [2], [3]. Thus, visualizing, interpreting,
and understanding CNNs are not trivial [4].

Inspired by neuroscience studies [5], a typical CNN consists
of a hierarchical structure of layers [6], where one of the most
important properties for each convolutional (conv) layer is that
one can use a conv filter as a feature detector to extract useful
information from input images [7], [61]. Therefore, after learn-
ing, conv filters are meaningful. The features captured by these
filters can be represented in the original natural images [4].
Often, one typical feature shares some similarities with certain
image patches of natural images from the training set. These
similarities are obtained by using a very large set of specific
images with reasonable labels. The benefit of this is that fea-
tures are relatively universal for one category of objects, which
is good for recognition. However, it also causes the difficulty
of visualization or interpretation due to the complex nature
of natural images, that is, the complex statistical structures of
natural images [8]. As a result, the filters learned in CNNs are
often not obvious to be interpreted [9].

On the other hand, researchers begin to adapt CNNs for
studying the central questions of neuroscience [10], [11].
For example, CNNs have been used to model the ventral
visual pathway that has been suggested as a route for visual
object recognition starting from the retina to the visual cor-
tex and reaching the inferior temporal (IT) cortex [11]–[14].
The prediction of neuronal responses, in this case, has sur-
prisingly good performance. However, the final output of this
CNN model is representing dense computations conducted in
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many layers, which may or may not be relevant to the bio-
logical underpinnings of information processing in the brain.
Understanding these network components of CNNs is difficult
given that the IT cortex part is sitting at a higher level of our
visual system [11].

In principle, CNN models can also be applied to early sen-
sory systems where the organization of underlying neuronal
circuitry is relatively clear and simple. Thus, one expects
knowledge of these neuronal circuits could provide useful
and important validation for CNNs. Indeed, a few studies
applied CNNs and their variations to earlier visual system,
such as the retina [15]–[18], V1 [19]–[25], and V2 [26].
Most of these studies are driven by the goal that the bet-
ter performance of neural response can be achieved by using
either feedforward and recurrent neural networks (or both).
These new approaches increase the complexity level of system
identification, compared to conventional linear/nonlinear mod-
els [27]–[29]. Some of these studies also try to look into the
details of network components after learning to see if and how
they are comparable to the biological structure of neuronal
networks [18], [23], [25].

The retina, compared to other earlier visual systems, has a
relatively simple neuronal circuit with three layers of neu-
rons as photoreceptors, bipolar cells (BCs), and ganglion
cells, together with inhibitory horizontal and amacrine cells
in between as illustrated in Fig. 1(a). The retinal ganglion
cells (RGCs), as the only output neurons of the retina, send
visual information via the optic tracts and the thalamus to
cortical areas for higher cognition. Each RGC receives input
from a number of excitatory BCs as a driving force to gen-
erate spikes, which traditionally is modeled by a biophysical
model with a number of filters and nonlinearities as in Fig. 1(b)
[27], [30], [31]. Thus, it serves as a typical model for both
deciphering the structure of neuronal circuits [32]–[37] and
testing novel methods for neuronal coding [27], [28], [38]. In
this article, we use the retina to show what could be learned by
CNNs. Unlike these previous studies focusing on a large pop-
ulation of RGCs [18], [23], here we take a different viewpoint
by modeling single RGC with CNN as illustrated in Fig. 1(c).
In this way, one can use the single cell to reveal the details of
the receptive field of visual neurons [25].

Our aim is to study what kind of possible biological struc-
ture components in the retina can be learned by CNNs, and
how one can use CNNs for understanding the computations
carried out by single retinal cells. These questions concern the
research focus of understanding, visualizing, and interpreting
the CNNs components out of its black box.

Like those typical existing biophysical RGC models based
on interpretable biophysical proprieties of the receptive filed
measured experimentally [28], [38], we found our CNN model
is also interpretable. By using a minimal biophysical model of
RGC, we found the conv filters learned in CNNs are essen-
tially the bipolar subunit components of the RGC model.
Furthermore, we applied CNNs to analyze biological RGC
data recorded in the salamander. The conv filters are resem-
bling the receptive fields of BCs that sit in the previous layer
of RGC and pool their computations to a downstream sin-
gle RGC. Such a fine structure picture of the retinal receptive

field revealed by CNNs suggests that conv filters learned are
resembling biological components of the retinal circuit. Thus,
a CNN learning from one single retinal cell reveals a minimal
neural network carried out in this cell.

In addition, different RGCs were trained to obtain their cor-
responding CNN models, then we transferred these CNNs
between these RGCs to test the ability of transfer learn-
ing. There is a diversity of transfer learning performance. In
general, CNN models have a good performance in transfer
learning. However, the best performance is still the one trained
with its own original data, which implies that the CNN model
is cell specific with a set of filters inherited from the target
RGC. Furthermore, when CNNs are applied to a different input
domain, here white noise images versus natural images, they
can capture the meaningful responses of the RGCs in terms
of the proper number of spikes and right spike timings of
spikes, even in the cases where there is no spike for some
specific images. This implies that CNNs indeed captures the
full computational ability of one cell for different inputs.

Some preliminary results of this article were presented in a
NIPS workshop short communication [39].

II. METHODS

A. Biophysical RGC Model

A biophysical RGC model as in Fig. 1(b) was modeled as
a typical subunit model used previously [27], [40]. The model
cell has four subunits with a spatial filter of the size 2×2 pixels,
similar to a conv filter of CNNs but only sitting at a specific
spatial location, and a temporal filter to take into account
of temporal dynamics. Each subunit convolves the incoming
stimulus image and then applies a nonlinearity of threshold-
linear rectification. The output subunit signals are then polled
together by the RGC. The polled signal is applied with a
threshold-linear output nonlinearity with a positive threshold
at unity to make spiking sparse. Thus, with this model, a given
sequence of stimulus consisted of white noise images with the
size as 8 × 8 pixels can generate a train of spikes.

B. Biological RGC Data

A public dataset of RGCs recorded in salamander as
described in [17], [30], and [41] was used for CNNs modeling.
Briefly, a population of RGC spiking activities was obtained
by multielectrode array recordings as in [29]. The retinas were
optically stimulated with spatiotemporal white noise images,
temporally updated at a rate of 30 Hz and spatially arranged
in a checkerboard layout with stimulus pixels of 30 × 30 µm.
The recording time is about 4 h so that there are enough stim-
ulus images and spikes for training a CNN model. A dataset of
300 natural images was also used as the stimulus for studying
natural image responses [30], [41].

C. CNN RGC Model

We used naive CNN models containing a different number
of convolution layers and a single dense layer as illus-
trated in Fig. 1(c). CNNs were implemented with Keras
using Tensorflow as backend. The code is available at
https://sites.google.com/site/jiankliu.
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(a)

(c)

(d)

(b)

Fig. 1. Illustration of the biophysical model and the CNN model to study retinal computing. (a) Retinal circuit computes its output as a sequence of spikes
for each RGC when visual scenes are received by the eyes. (b) Illustration of the RGC model structure used in the current article. Simplified neuronal circuit
of a single RGC can be represented by a biophysical model that consists of a bank of subunit linear filters and nonlinearities. Note that there are four subunits
playing the role of conv filters. (c) Illustration of the CNN model structure. CNN is used to train the same set of stimulus images to predict the spikes of all
images for both biological RGC data and biophysical model data. (d) Flow diagram of training a CNN model to predict the RGC responses.

To model biophysical RGC model data, the conv filter size
was fixed as 7 × 7. Both the number of filters and layers
were tested. To model biological RGC data, several sets of
parameters in convolution layers, including the number of lay-
ers, the number, and size of convolution filters were explored.
The prediction performance is robust against these changes of
parameters. Therefore, we adopted the filter size of 15 × 15
in the first conv layer and 3 × 3 in the second conv layer.

For training CNNs with biophysical RGC model data, we
generated a dataset consisting of 600K training samples of
white noise images, and an additional set of 10K samples for
testing. The training labels are a train of binary spikes with 0
and 1 generated by the model.

For biological RGC data recorded in the salamander, there
are about 320K training samples of white images and labels
as the number of spikes as in [0 5] for each image. The test
data have 300 samples, which were repeatedly presented to
the retina for about 200 trials.

The procedure of training a CNN RGC model is shown
in Fig. 1(d), where either binary spike train or firing rate
of biophysical and biological test data can be compared to
the predicated firing as CNN output for calculation of the
Pearson correlation coefficient (CC) as a performance mea-
sure. A Poisson loss is used to optimize the CNN output to
match the spiking labels. The final nonlinearity after the dense
layer is a standard softplus function.

For preprocessing of data, a standard technique of spike-
triggered average was applied to obtain a 3-D spatiotemporal
receptive field filter [28]. The singular value decomposition of
this 3-D filter yields a temporal filter and a spatial receptive
field [42].

Two versions of CNNs were used.
Version I: The first version of CNN has only spatial fil-

ters without temporal filters to be fitted. For this, data were
temporally correlated first by convolving every pixel of the
entire set of stimulus images with the temporal filter first along
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the temporal dimension [30], [43]. In this way, a sequence of
spatial images was obtained as inputs with the corresponding
spike train as output labels for the CNN model, such that this
CNN makes analysis focusing on the spatial structure of recep-
tive fields. In addition, this CNN has much fewer parameters,
for example, when the temporal filter of interest is lasting for
600 ms with 30 Hz, then CNN parameters are 20 times less.

Version II: The second version of CNN is the full model
with both spatial and temporal filters to be learned from the
RGC data. This usually results in a large number of param-
eter that causes unavoidable problems for traditional statical
models [27], [38]. The recent advancements of deep learning
make it relatively easier to fit the data with high-dimensional
parameters. Both versions of CNNs were used and compared
to see the effects on the performance.

When CNNs are used for the object recognition task by
learning a set of natural images, it is important to visualize
what kind of features of natural images are learned by conv
filter [4]. Similarly, here one can also visualize the image fea-
tures represented by each CNN conv filter. The feature here
means the response-weighted average feature, which is the
spike-triggered average generated by a batch of random noise
stimulus and its average activation from the corresponding
feature map in the first layer.

III. RESULTS

By using both clearly defined biophysical model and real
retinal data, we show that CNNs are interpretable when
single RGC was modeled with the benefit to clarify what has
been learned in the network structure components of CNNs.
Recently, a variation of non-negative matrix factorization was
used to analyze the RGC responses to white noise images
and identify a number of subunits as BCs of one RGC [30].
With this picture in mind, here we address the question of
what types of network structure components can be revealed
by CNN when it is used to model the single RGC response.

A. Subunits of Modeled RGC as CNN Filters

We set up a biophysical RGC model with four subunits as in
Fig. 1(b), which is resembling a 2-layer network with one layer
of subunits and one layer of single RGC. By using a set of
white noise images, the model generated a sequence of spikes
to simulate a minimal neural network of the RGCs. With the
input of stimulus images and the output of RGC spikes, we
can train a CNN as in Fig. 1(c) to predict the simulated spikes
generated by the RGC model.

Given that our focus is looking into the structure of network
components learned in CNNs, we varied a number of parame-
ters to train the CNNs, in particular, the number of conv filters
from 1 to 16. When only one conv filter is used, the learned fil-
ter has a similar structure as the receptive field of the modeled
RGC as in Fig. 2 that can be obtained by the standard method
called spike-triggered average [28] (see Methods). When there
are more conv filters, there are more fine structure of the recep-
tive field as filters learned by CNNs. We found that when
training the CNN with four conv filters, the outcome filters
resemble the subunits used in the biophysical RGC model.

Fig. 2. Subunit structure of RGCs model data revealed by CNNs. Visualizing
conv filters learned in a CNN with one layer of conv filters. The number of
conv filters is from 1 to 5, where both spatial and temporal filters are learned
by CNNs. (Inset) spatial receptive field and temporal filter of the modeled
RGC computed by spike-triggered average (left) and CNN (right). Note the
filter size is 7 × 7, and the full size of the receptive field is 8 × 8.

The outcome filters learned by the CNNs are convergent in
the sense that there are only four “effective” filters similar to
the model subunits, the rest of the filters are noise, for exam-
ple when there are five conv filters in Fig. 2. This observation
is similar to a recent study where the non-negative matrix
factorization was used for identifying the subunits [30].

The nature of the black box of CNNs often forces
researchers to tune the parameters of CNNs according to the
performance that is usually the accuracy of the tasks such as
image classification. Here, the performance is then the cor-
relation between CNNs output and modeled RGCs spiking
response. Not surprisingly, CNNs can give a good performance
for predicting the RGCs response, which is consistent with
the previous studies of various types of visual neurons [11],
[15], [23]. More important, here we also found when there is
enough number of conv filters, increasing the number of conv
filters does not make the performance better as shown by an
evolution of filter change with an increasing number of filters
as in Fig. 3. The performance is convergent when the number
of conv filter reaches 5.

In addition, the number of the conv layer is tuning the CNN
performance to reach the saturation level. There is no differ-
ence when there are two layers or three layers of CNN conv
filters. When there are two or more layers of conv filters, the
performance is stabilized independently of the number of conv
filters used. In either case, when there is only one conv filter
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Fig. 3. CNN performance saturated when there are more conv filters and
layers. Data points represented by 10 runs with mean ± standard derivation
(STD).

used, it yields a result where the receptive filed of RGC is
learned as one conv filter of CNN.

Therefore, these results show that increasing the number
of conv filters and layers does not increase the performance
when enough components are used to capture the underly-
ing biophysical properties of the RGC model. In other words,
CNN parameters could be highly redundant when setting up
to a larger number. Such redundancy of parameters is widely
observed for deep-learning models [44], [45]. This point will
be shown by the biological data below in detail.

Altogether, these results suggest that CNNs can identify the
underlying hidden network structure components within the
RGCs model by only looking at the input stimulus images
and the output spiking response.

B. Subunits of Biological RGC as CNN Filters

To further characterizing the structure components of CNNs
in detail, we use CNNs to learn the biological RGC data with
similar images of white noise and spiking responses. We first
use CNNs to study temporally correlated RGCs data where no
temporal filter is needed to be learned by CNNs (see Version I
CNN model in Methods) with the benefit of fewer param-
eters of CNNs to be learned. Similar to the results of the
RGC model above, the outputs of the CNN model can recover
fine structures of the receptive field of RGC data very well
as in Fig. 4(a). We also found that the learned conv filters
converge to a set of localized subunits whereas the rest of fil-
ters are noisy and close to zero as in Fig. 4(b). The size of
these localized filters is comparable to that in BCs around 100
µm [30].

In addition, the features (see Methods) represented by these
localized conv filers are also localized. Given the example
RGC is an OFF type cell that responds to the dark part of
images strongly, most features have similar OFF peaks resulted

from the OFF BC-like filters. These OFF features tile the space
of the receptive field of RGC. Interestingly, there are some
features with ON peaks, which plays a role as inhibition in
the retinal circuit. A few features have some complex struc-
tures mixed with OFF and ON peaks, which are mostly resulted
from the less localized filters. However, if the filters are pure
noise, the resulting features are pure noise without any struc-
ture embedded. Besides filters and features, the CNN model
generates a good prediction of RGC response as in Fig. 4(c).
These observations are similar across different RGCs recorded.

When there are 32 conv filters used in the CNN, there are
enough number of conv filters to fit the data. Given there are
many redundant filters [minimal 16 filters close to zero in
Fig. 4(b)] unused in CNN learning, they unlikely reflect any
interesting biophysical properties of RGC data, so could be
no contribution for the performance of CNN. Indeed, CNN
performance maintains at a similar level when the conv filters
are pruned such that the only effective filters are used in CNN.
The selection of effective filters was quantified with the spatial
autocorrelation of conv filters [30]. The pruning results of a
population of RGCs show that the performance is similar to a
small subset of effective conv filters in Fig. 5. When pruning
is done with randomly selected conv filters out of 32, the
performance drops to zero as in Fig. 5 (right).

These results confirm the observation shown in the bio-
physical model RGC, where the CNN performance cannot be
increased with more parameters than enough. In terms of bio-
logical RGCs, the subunits are the upstream BCs [30]. Thus,
the conv filters play a functional role as BCs when using CNNs
to model biological RGCs.

Next, we examine the effect of sample size and noise on the
CNN model. For the same cell shown in Fig. 4, the size of sam-
ples/images was changed in a wide range from 1% to 100%,
in this way, the corresponding number of spikes recorded
in RGC is reduced to about 150 spikes with 1% of train-
ing data. Both CNN performance and loss after training are
dependent on how much data used for training as in Fig. 6(a).
Surprisingly, with only about 150 spikes from 1% of data, we
can still obtain some level of performance with CC about 0.35
as in Fig. 6(ai). Although the receptive field with such a small
amount of spikes is not good [Fig. 6(aii)], the performance of
CNNs does not drop that much (CC is 0.35 versus 0.75, but
with 150 versus 15K spikes). Thus, CNNs seems to need only
a relatively small set of spikes for training to obtain reason-
able performance. Note with 30% of data (4.5K spikes), the
performance is almost similar to the full data. In this sense, the
CNNs seem to be much less data demanding than traditional
biophysical RGC models [27], [38]. The resulting filters and
features of CNNs are also worse, however, the spareness of
filters still holds although 32 filters are used.

In contrast to the sample size, the noise has a much larger
effect on the CNN model as in Fig. 6(b). Keeping the sample
size unchanged, we replaced part of data images with irrele-
vant noise images, for instance, 70% of noise means there are
30% of data and 70% of noise images. Although the data per-
centage is the same as 30%, the CNN trained with noise has
a much worse performance (CC ≈ 0.4) compared to the same
amount of data without noise (CC ≈ 0.7). Fig. 6(bi)–(biii)
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(a) (b)

(c)

Fig. 4. Subunit structures of biological RGC revealed by CNN. (a) Receptive fields of one RGC computed by STA and CNN prediction. (b) Visualizing
CNN model components of conv filters and average features represented by each filter. (c) Neuronal response predicted by CNN visualized by RGC data
spike rasters (upper), CNN spike rasters (middle), and their average firing rates (bottom).

Fig. 5. Pruning conv filters in CNNs. (Left) The CNN model performance
(CC) maintained at a similar level after pruning CNN by using only a subset
of effective (nonzero) filters as in Fig. 4. (Right) CNN performance dropped
to zero when pruning CNN with the same number of parameters but a ran-
domly selected subset of filters. Error bars indicate ten random prunings
(mean ± STD).

shows an example result of training CNN with complete noise
images. Even in this case, the redundancy of filters makes most
filters close to zeros.

C. Transfer Learning Across Different RGCs

Given there is a population of RGCs recorded experimen-
tally and then modeled by CNNs, one can study the behavior
of transfer learning, or the generalization ability of CNNs
model, that is, using the CNN model learned from one RGC
to predicate the response of another RGC. Several scenarios of
transfer learning are commonly used in deep learning, includ-
ing using a pretrained model directly, fine-tuning a pretrained
model, or fixing features of a pretrained model but adjusting

the dense layer [46]. Here, we took the approach to use a pre-
trained CNN directly from one RGC to other different RGCs.
This is suitable for our experimental setup, as a large full-
size of white noise images were presented to all RGCs of a
population at one time. Different RGCs are sitting at different
spatial locations of images, therefore they are seeing parts of
the entire image. However, due to the nature of white noise
images, the statistics of the ensemble input images are the
same, or at least closely similar to Gaussian, across different
RGCs. Thus, one expects that the transfer learning of the CNN
model, in this case, has a good performance.

However, we found there is a large diversity of trans-
fer learning performance across different RGCs as shown in
Fig. 7, where there are four example cells showing their CNNs
model predictions (diagonal traces labeled as “Self”) and
the corresponding transfer learning behaviors (off-diagonal
traces). The CNN performance characterized by CC shows the
tendency that the best performance is always from the CNN
model trained with their own cell. For instance, cell 1 has a
good test performance with its own CNN model, denoted as
CNN 1. When CNN 1 is transferred to the other three cells,
the prediction power is lower than cell 1. However, CNN 3 is
transferred to cell 1 with a better performance of CC = 0.64
compared to CC = 0.56 for cell 3 itself. Interestingly, all CNN
models have a reasonably good performance for cell 1, even
though CNN 4 has a fairly good performance for cell 4 itself.

To further investigate the ability of transfer learning of the
CNN model, we collect a population of ten RGCs (including
those four cells in Fig. 7). The population plots in Fig. 8
confirm the observation above. The scatter plot of self-learning
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(ai)

(a)

(aii)

(aiii)

(b)

(bi)

(bii)

(biii)

Fig. 6. Effects of training sample size and noise on the performance of
CNNs. (a) Effect of sample size changing from 1% (0.01) to 100% (1) of
the entire training set images on the performance of CNN (CC, upper) and
the loss of training (Loss, bottom), where 1% of training data has about
3.2K images and 0.15K spikes (3.05K of nonspiking labels as zero) due to
the spare firing property of RGC. Data point of ai is shown in (ai)–(aiii).
(ai) CNN output versus test data firing rate. (aii) receptive field of data (left)
versus CNN prediction (right). (aiii) conv. filters and features leaned by CNN.
(b) Similar to (a) but for the effect of noise in sample images, where the ratio
of noise is changing from 0% (without noise) to 1 (100% of noise without
data). (bi)–(biii) Similar to (ai)–(aiii).

Fig. 7. CNNs transfer learning across different cells. (Upper) Four example
cells used to train the CNN models. Learned CNNs are then transferred across
different RGCs for prediction. Over this 4 × 4 matrix, the diagonal ones are
the cases of self-training (Target to Target) with each cell’s data. cell 1 is the
same cell as in Fig. 4. CNN 1 is the model obtained by cell 1. The first row
represents that CNN 1 model is transferred to predict the test data of cells
2–4. The first column represents that three CNN models (CNN 2–4) from the
other three cells (cells 2–4) are transferred to predict the test data of cell 1.
(Bottom) Performance of this 4×4 matrix. The first four points are calculated
for cell 1 from CNN 1–4. Different CNNs are colored in different colors.

(Target → Target) versus transfer learning (Target → Others)
in Fig. 8 (left) shows that the CNN model has reasonable good
performance for both self-learning and transfer learning, yet
the results are quite diverse. Note that even for the worst cell

(a)

(c)

(b)

Fig. 8. CNNs transfer prediction for a population of ten RGCs.
(a) Performance matrix of ten CNNs across different RGCs, where the diag-
onal ones are self-training (Target to Target, purple), each row is transferring
the CNN trained by target cell to all other cells (Target to Others, fix-CNN,
green), and each column is transferring all other CNNs to the target cell
(Others to Target, fix-data, light blue). The first four cells are the same ones
as in Fig. 7. The rows and columns of the performance matrix have the same
meaning as in Fig. 7. (b) Performance matrix shown as a scatter plot of self-
training versus fix-CNN. (c) Performance matrix is shown as a scatter plot of
self-training versus fix-data.

with lowest CC in self-learning, when its CNN is transferred
to other cells, its CNN has a better performance.

Similarly, as above, the performances are always lower
when other CNNs are transferred to the target cells themselves
[Fig. 8 (right)]. This indicates that each CNN model is really
optimized for the target cell after training. For the best cell
who has the highest CC by CNN, other CNNs trained with
other cells also have good performance in general. In contrast,
for the worst cell who has the lowest CC by CNN, other CNNs
trained with other cells also have bad performance.

These results suggest that the CNN learned from each cell is
very specific to that particular cell. The resulting CNNs, there-
fore, learns to obtain a minimal neural network that carries out
the essential computations done by that cell.

D. Full CNN Model for Biological RGC Data

The results above on biological RGC data were studied by a
CNN without temporal filter learned. Now we consider the full
CNN model (Version II CNN model, see Methods), where both
temporal and spatial filters are needed. Similar to the RGC
model data, CNN can recover both spatial filters as receptive
field and temporal filters as shown in Fig. 9(a). With the full
CNN model, there are 20 times more parameters than that
of temporally correlated data. Both conv filters and features
visualized in CNN have still a located spatial structure and
good temporal filer shape for a subset of filters. Not surpris-
ingly, the prediction of CNNs for neuronal response has a good
performance as well.
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(a)

(b)

(c)

(d)

(f) (g)

(e)

Fig. 9. Spatial and temporal filters of biological RGC data revealed by full
CNN model. (a) Receptive fields as spatial STA of the example cell and CNN
prediction. Temporal filters are also recovered by CNN. (b) Visualizing CNN
model components of both conv filters and average features represented by
each filter in both spatial and temporal dimensions. (c) Neuronal response
predicted CNN visualized by RGC data spike rasters (upper), CNN spike
rasters (middle), and their firing rates. (d)–(f) Transfer prediction by full CNN
models for a population of ten RGCs. All plots have the same meanings as
Fig. 8. (g) CNN prediction improved with temporal filter included, but transfer
prediction is worse in general. Performance (CC) matrix shown as a scatter
plot of CNN without temporal filter (Fig. 8) versus full CNN with temporal
filter. Black indicates transfer prediction and red indicates target prediction.

Similar to Fig. 8, we also tested the transferring learning
ability of the full CNNs model for the same population of
ten RGCs. The results in Fig. 9 show a similar tendency of
transferring learning for the CNN model. Yet, there are some
differences between the two versions of CNN models, which
can be seen by comparison in Fig. 9. For the target case, where
each CNN was trained by using that particular RGC data, the
full CNN yields a better performance than the CNN without
temporal filter learned. However, when full CNNs are trans-
ferred between different cells, their performance is in general
worse than reduced CNNs. That indicates that the full CNN
with both spatial and temporal filters is more specific to the
particular cell used for training. In turn, such a cell-specific
CNN cannot be used to explain other cells. Therefore, this
confirms the result that CNN indeed learns the underlying

neuronal computation carried out by the biological cell, which
cannot be transferred across different cells.

Given there are 20 times more parameters in the full CNN,
the conv filters have less clearly localized structures than those
in the CNN of reduced temporal correlations when comparing
the filters in Figs. 4 and 9. This seems to be caused by the lim-
ited sample size of biological RGC data. When the biophysical
RGC model is used for both versions of CNN, there is no dif-
ference in terms of the structure of conv filters, see the results
shown in [39]. Therefore, depending on the questions to be
addressed, one may want to choose the simple or full version
of CNN for modeling static images or dynamical videos, as
videos contain strong temporal correlations that have a strong
impact on the adaptation of neuronal dynamics [29].

E. Transfer Learning Between Different Stimulus Images

Above we tested transfer learning of CNNs across different
cells. Here, we further test the transfer learning of CNNs from
each cell but for different input images. So far, the CNN model
of each GC trained by white noise images, one can test the
ability of transfer prediction by directly applying the learned
CNNs to natural scenes.

For this, a sequence of 300 natural images was presented to
the retina, where each image was briefly presented for 200 ms
and followed by 800-ms empty scene. Such a protocol of stim-
ulation is to leaving out temporal adaption for each image (see
details in [41]). Therefore, we used a temporal decorrelated
CNN model (Version I) to fit the neuronal response of this
sequence of flashing images.

Surprisingly, CNNs learned by white noise images can
predict the spiking response of natural images quite well.
Fig. 10(a) shows the result of one example cell. For a clear
illustration, we only show a partial sequence of 50 images.
The detailed result is demonstrated with five images together
with three cells in Fig. 10(b). Each RGC reads a different
part of images as the receptive field is located differently.
Interestingly, CNNs predict the responses well when all three
cells fire for image 1, in addition, CNNs can also predict when
one of three cells is not firing with spikes for images 2–4. Even
when all three cells are not firing completely for image 5, the
outputs of CNNs are also silent.

These resulting in transfer learning across image domains,
compared to those across different RGCs, suggest that CNNs
intend to learn a cell-specific neural network in which conv
filters play a role as upstream subunit cells that connect to a
particular RGC. Thus, CNNs serve a model of neural system
identification to reveal the underlying computations of the
RGCs.

IV. SUMMARY AND DISCUSSIONS

In recent years, system identification of neural coding based
on neural networks has been greatly improved by the devel-
opment of deep CNN [1], [10], [11], where multiple layers
and huge banks of local subunit filters within the network
are significant characteristics. Besides its powerful ability to
many practical tasks [1], the underlying structure is mimicking
a hierarchical organization of the brain [10], [11]. However,
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(a)

(b)

Fig. 10. Transfer prediction of natural images by CNNs trained with white noise images. (a) Performance of CNN for the example RGC [green cell in (b)]
with 50 images (one image per second). (b) Performance of CNN with four example images and three RGCs. (Top) Five images overlaid with the outlines of
the receptive field of three RGCs colored in green, light blue, and yellow. (Bottom) Spike response of each GC for each image (blue) together with spikes
sampled from CNN output (red). Each image was presented for 200-ms long (colored shadow window) then followed by 800-ms gray period. Note RGC
response is delayed after the onset of an image. Each image triggers one RGC in a different manner with spiking or nonspiking depending on the texture of
the image and specific RGC.

there is no first principle about designing the structure of a
hierarchical deep-learning network [2]. Recent works begin to
look into the details of network structure, in particular, with
the potential connections to the biological brain [3], [11].

Hereby focusing on single RGC, we found that CNNs can
learn their parameters in an interpretable fashion, and CNNs
network components are close to the biological underpinnings
of the retinal circuit. With the benefit of the relative well-
understood retinal circuit, our results suggest that the building
blocks of CNNs are meaningful when they are applied to
neuroscience for revealing network structure components.

Deep CNNs are useful for modeling the abstract level of
vision information [10], [11] and neural coding in general [47]
in neuroscience. This article simplified the approach used by
the previous studies [10], [11], [13] for the higher part of

the visual cortex, where interpretable structure components of
deep CNNs are difficult due to the complex hierarchical layers
from the retina to the IT cortex in the brain. By training CNNs
with white noise images, our current work also simplified the
interpretation, compared to the studies where natural images
were used for model visual neurons with CNNs [15], [21],
[25], since white noise images have the benefit to mapping
out the receptive field of the visual neurons [28], [30].

Unlike most of the recent studies, which are driven by
the goal that the better performance of neural response can
be archived by using either feedforward and recurrent neu-
ral networks (or both), here we focus on the fine structure
of the receptive field in the retinal circuit. Along with sev-
eral recent papers [23], [25], [48], characterizing the receptive
field of visual neurons is important for understanding the filters
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leaned by the CNNs. Given the retina has a relatively clear and
simple circuit, and the eye has (almost) no feedback connec-
tions from the cortical cortex, it is a suitable model system
as a feedforward neural network, similar to the principle of
CNNs. Certainly, the contributions from the inhibitory neu-
rons, such as horizontal cells and amacrine cells, play a role
in the function of the retina. In this sense, the potential neu-
ral networks with lateral inhibition and/or recurrent units are
desirable [15], [16].

Our approach is suitable to address other difficult issues of
deep learning, such as transfer learning, since the domain of
images seen by single RGCs is local and less complicated
than the global structure of entire natural images. In the first
case, it is surprising that the transfer learning across different
RGCs is not perfect given that the stimulus distribution is the
same since the ensembles of white noise image stimuli for
all RGCs converge to a naive Gaussian distribution. However,
a further thought indicates that the CNNs learned from each
cell is rather specific with a particular set of filters in conv
layers. In this article, we only explore the filters of CNNs.
Future work is needed to investigate other components, such
as nonlinearities, of CNNs.

Here, we also test the ability of transfer learning across dif-
ferent types of stimulus, that is, transfer between white noise
images to natural images. Traditionally, dynamical videos
have been used in the studies of using CNNs with the neu-
ronal signals of interest as fMRI data [49], for neuronal
spiking response, a sequence of flash images is often used
[11], [15], [20]. One needs to consider the case of how to use
CNNs for neuronal spikes to study dynamical visual scenes,
that is, continuous videos [50]. Future work is needed in this
direction of studying the retinal computation under dynamical
natural scenes.

CNNs here modeled for the retinal RGCs can be fur-
ther used for the reconstruction of natural images based on
the responses of retinal RGCs [50], [51]. Embedding the
encoder/decoder into the retinal prosthesis has been suggested
as a promising direction for visual restoration [52]. Such an
approach of studying spike encoding and decoding of visual
scenes with neural spikes will be crucial for the next gen-
eration of neuromorphic computing, including artificial visual
system [53], where the data format processed on chips are dig-
ital spikes [54]. One expects that the close interaction of the
algorithms based on spike data and CNNs [55]–[58] with neu-
romorphic chips [59], [60] will greatly expand our computing
capacity.
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